direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content


Illustration des im Rahmen von QuSecure geplanten Quantenkommunikations-Netzwerkes im Herzen Berlins. Links: Kartenansicht des Mehrparteien-Netzwerkes auf dem Campus der Technischen Universität Berlin. Rechts: Sender und Empfänger, alias Alice und Bob, kommunizieren mittels einzelner Photonen über eine Relais-Station.

Secure communication networks using integrated quantum light sources

In the framework of the project QuSecure quantum communication systems will be developed based on semiconductor quantum light sources.

For this purpose the full potential of single-photon sources based on semiconductor quantum dots will be exploited. Different protocolls for quantum key distribution will be implemented, taking advantage of the scalability of state-of-the-art quantum light sources as well as the specific quantum-mechanical properties of the generated light states.

Aiming at the implementation of quantum communication scenarios immune against eavesdropping attacks at GHz clock rates, QuSecure will essentially improve the security level and key rates compared to the current state-of-the-art. Overarching project goal is to establish an urban quantum communication network based on quantum light sources.

This QuSecure-Network will be located at the Campus of Technische Universität Berlin, right at the heart of the German capital.

The project QuSecure (contract number: 13N14876) is funded by the German Federal Ministry of Education and Research (BMBF) within the funding program Photonic Research Germany.





D. A. Vajner, L. Rickert, T. Gao, K. Kaymazlar, T. Heindel: Quantum Communication Using Semiconductor Quantum Dots, Advanced Quantum Technologies 2100116, https://doi.org/10.1002/qute.202100116 (2022).

T. Gao, L. Rickert, F. Urban, J. Große, N. Srocka, S. Rodt, A. Musiał, K. Żołnacz, P. Mergo, K. Dybka, W. Urbańczyk, G. Sȩk, S. Burger, S. Reitzenstein, T. Heindel: A quantum key distribution testbed using a plug\&play telecom-wavelength single-photon source, Applied Physics Reviews 9, 011412 (2022).

T. Gao, M. v. Helversen, C. Anton-Solanas, C. Schneider, T. Heindel: Atomically-thin Single-photon Sources for Quantum Communication, arXiv , 2204.06427 (2022).


T. K. Bracht, M. Cosacchi, T. Seidelmann, M. Cygorek, A. Vagov, V. M. Axt, T. Heindel, D. E. Reiter: Swing-Up of Quantum Emitter Population Using Detuned Pulses, PRX Quantum 2, 040354 (2021).

L. Rickert, F. Schröder, T. Gao, C. Schneider, S. Höfling, T. Heindel: Fiber-pigtailing quantum-dot cavity-enhanced light emitting diodes, Applied Physics Letters 119, 131104 (2021).


T. Kupko, M. von Helversen, L. Rickert, J.-H. Schulze, A. Strittmatter, M. Gschrey, S. Rodt, S. Reitzenstein, T. Heindel: Tools for the performance optimization of single-photon quantum key distribution, npj Quantum Information 6, 29 (2020).

S. Rodt, S. Reitzenstein and T. Heindel: Deterministically fabricated solid-state quantum-light sources, Journal of Physics: Condensed Matter 32, 153003 (2020).

M. Schmidt, M. von Helversen, S. Fischbach, A. Kaganskiy, R. Schmidt, A. Schliwa, T. Heindel, S. Rodt, S. Reitzenstein: Deterministically fabricated spectrally-tunable quantum dot based single-photon source, Optical Materials Express 10, 76 (2020).


L. Rickert, T. Kupko, S. Rodt, S. Reitzenstein, T. Heindel: Optimized designs for telecom-wavelength quantum light sources based on hybrid circular Bragg gratings, Optics Express 27, 36824 (2019).

L. Bremer, S. Fischbach, S.-I. Park, S. Rodt, J.-D. Song, T. Heindel, S. Reitzenstein: Cesium-Vapor-Based Delay of Single Photons Emitted by Deterministically Fabricated Quantum Dot Microlenses, Advanced Quantum Technologies , 1900071 (2019).

M. v. Helversen, J. Böhm, M. Schmidt, M. Gschrey, J,-H, Schulze, A. Strittmatter, S. Rodt, J. Beyer, T. Heindel, S. Reitzenstein: Quantum Metrology of Solid-State Single-Photon Sources using Photon-Number-Resolving Detectors, New Journal of Physics 21, 035007 (2019).

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.