direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationen

A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser
Zitatschlüssel 2021_04_Porte
Autor Xavier Porte and Anas Skalli and Nasibeh Haghighi and Stephan Reitzenstein and James A Lott and Daniel Brunner
Seiten 024017
Jahr 2021
DOI 10.1088/2515-7647/abf6bd
Journal Journal of Physics: Photonics
Jahrgang 3
Nummer 2
Monat apr
Verlag IOP Publishing
Wie herausgegeben 2012.11153
Zusammenfassung Neural networks are one of the disruptive computing concepts of our time. However, they fundamentally differ from classical, algorithmic computing. These differences result in equally fundamental, severe and relevant challenges for neural network computing using current computing substrates. Neural networks urge for parallelism across the entire processor and for a co-location of memory and arithmetic, i.e. beyond von Neumann architectures. Parallelism in particular made photonics a highly promising platform, yet until now scalable and integratable concepts are scarce. Here, we demonstrate for the first time how a fully parallel and fully implemented photonic neural network can be realized by spatially multiplexing neurons across the complex optical near-field of a semiconductor multimode laser. Discrete spatial sampling defines ∼90 nodes on the surface of a large-area vertical cavity surface emitting laser that is optically injected with the artificial neural networks input information. Importantly, all neural network connections are realized in hardware, and our processor produces results without pre- or post-processing. Input and output weights are realized via the complex transmission matrix of a multimode fiber and a digital micro-mirror array, respectively. We train the readout weights to perform 2-bit header recognition, a 2-bit XOR logical function and 2-bit digital to analog conversion, and obtain and 2.9 × 10−2 error rates for digit recognition and XOR, respectively. Finally, the digital to analog conversion can be realized with a standard deviation of only 5.4 × 10−2. Crucially, our proof-of-concept system is scalable to much larger sizes and to bandwidths in excess of 20 GHz.
Link zur Publikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.