direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Deterministic quantum devices for quantum communication networks

Schematic of the CLL approach: (a) Mapping of the luminescence properties of a resist-coated sample, (b) full-dose exposure of the resist at chosen positions, (c) fabrication of, e.g., meas structures by dry etching, (d) final structure with, e.g., quantu

We focus on the research and development of deterministic devices for the generation and manipulation of single photons for applications in the field of quantum information technology. This will be done by developing deterministic and non-classical light sources using site-controlled quantum dots grown by the buried-stressor growth approach and by utilizing in-situ cathodoluminescence lithography as technology platforms. The research tasks will also include the deterministic fabrication of on-chip optical elements and circuits for highly-integrated photonic structures.
Principal investigators:
Prof. Stephan Reitzenstein, TU Berlin Dr. Sven Rodt, TU Berlin
Funded by:
German Research Foundation within the Collaborative Research Center 787 "Semiconductor Nanophotonics: Materials, Models, Devices"
Homepage of CRC 787
Publications: (from the current and previous project phase)
S. Rodt and S. Reitzenstein, Integrated nanophotonics for the development of fully functional quantum circuits based on on-demand single-photon emitters, APL Photonics 6, 010901 (2021)
X. Porte et al., A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser, ArXiv e-print 2012.11153 (2020)
N. Srocka et al., Deterministically fabricated strain-tunable quantum dot single-photon sources emitting in the telecom O-band, Applied Physics Letters 117, 224001 (2020)
J. Große et al., Development of site-controlled quantum dot arrays acting as scalable sources of indistinguishable photons, APL Photonics 5, 096107 (2020)
S. Bounouar et al., Entanglement robustness to excitonic spin precession in a quantum dot, Phys. Rev. B 102, 045304 (2020)
P. Mrowiński et al., Directional single-photon emission from deterministic quantum dot waveguide structures, physica status solidi (RRL), Accepted Author Manuscript (2020)
N. Srocka et al., Deterministically fabricated quantum dot single-photon source emitting indistinguishable photons in the telecom O-band, Appl. Phys. Lett. 116, 231104 (2020)
T. Kupko et al., Tools for the performance optimization of single-photon quantum key distribution , npj Quantum Inf 6, 29 (2020)
M. Schmidt et al., Deterministically fabricated spectrally-tunable quantum dot based single-photon source, Opt. Mater. Express 10, 76-87(2020)
S. Rodt et al., Deterministically fabricated solid-state quantum-light sources, Journal of Physics: Condensed Matter 32, 153003 (2020)
P. Mrowiński et al., Excitonic complexes in MOCVD-grown InGaAs/GaAs quantum dots emitting at telecom wavelengths, Phys. Rev. B 100, 115310 (2019)
E. Schlottmann et al., Stochastic polarization switching induced by optical injection in bimodal quantum-dot micropillar lasers, Opt. Express 27, 28816-28831 (2019)
P. Schauber et al., Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits, Nano Lett. (2019)
L. Bremer et al., Cesium-Vapor-Based Delay of Single Photons Emitted by Deterministically Fabricated Quantum Dot Microlenses, Adv. Quantum Technol., 1900071 (2019)
K. Żołnacz et al., Method for direct coupling of a semiconductor quantum dot to an optical fiber for single-photon source applications, Opt. Express 27, 26772-26785 (2019)
T. Kupko et al., Performance Optimization and Real-Time Security Monitoring for Single-Photon Quantum Key Distribution, ArXiv e-print 1908.02672 (2019)
P. Mrowinski et al., Directional emission of a deterministically fabricated quantum dot - Bragg reflection multi-mode waveguide system, ACS Photonics ASAP (2019)
A. Camele and S. Reitzenstein, Non-Markovian features in semiconductor quantum optics: quantifying the role of phonons in experiment and theory, Nanophotonics, 20180222, ISSN (Online) 2192-8614 (2019)
S. Kreinberg et al., Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels, Nature Communications 10, 1539 (2019)
M. von Helversen et al., Quantum metrology of solid-state single-photon sources using photonnumber-resolving detectors, New J. Phys. 21, 035007 (2019)
T. Hoehne et al., Numerical Investigation of Light Emission from Quantum Dots Embedded into On-Chip, Low-Index-Contrast Optical Waveguides, Phys. Status Solidi B, 1800437 (2019)
J. Schleibner et al., Suppressed antibunching via spectral filtering: An analytical study in the two-photon Mollow regime, Phys. Rev. A, 99, 23813 (2019)
S. Holzinger et al., Quantum-dot micropillar lasers subject to coherent time-delayed optical feedback from a short external cavity, Scientific Reports 9, Article number: 631 (2019)
S. Holzinger et al., Determining the linewidth enhancement factor via optical feedback in quantum dot micropillar lasers, Opt. Express, OSA, 26, 31363-31371 (2018)
P. Mrowinski et al., Excitonic complexes in MOCVD-grown GaAs-based quantum dots emitting at telecom wavelengths, ArXiv e-print 1811.01346 (2018)
T. Heuser et al., Fabrication of dense diameter-tuned quantum dot micropillar arrays for applications in photonic information processing, APL Photonics 3, 116103 (2018)
S. Holzinger et al., Tailoring the mode-switching dynamics in quantum-dot micropillar lasers via time-delayed optical feedback, Opt. Express 26 (17), 22457-22470 (2018)
N. Srocka et al., Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 μm fabricated by in-situ electron-beam lithography, AIP Advances, 8, 085205 (2018)
S. Fischbach et al., A deterministically fabricated spectrally-tunable quantum dot based single-photon source, ArXiv e-prints, 1805.10623 (2018)
P. Schnauber et al., Deterministic integration of quantum dots into on-chip multi-mode interference beamsplitters using in-situ electron beam lithography, Nano Letters (2018)
P.-I. Schneider et al., Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber, Opt. Express (2018)
A. Kaganskiy et al., Micropillars with a controlled number of site-controlled quantum dots, Applied Physics Letters 112, 071101 (2018)
S. Bounouar et al., Generation of maximally entangled states and coherent control in quantum dot microlenses, Applied Physics Letters 112, 153107 (2018)
A. Schlehahn et al.,A stand-alone fiber-coupled single-photon source, Scientific Reports 8, 1340 (2018)
A. Kaganskiy et al., Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses, Optics Communications, 418, 162-166 (2018)
T. Heindel et al.,Accessing the dark exciton in deterministic quantum-dot microlenses, APL Photonics 2, 121303 (2017) Featured Headliner |
Press Release
S. Fischbach et al.,Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source, ACS Photonics 4, 6, 1327-1332 (2017)
S. Bounouar et al., Path-Controlled Time Reordering of Paired Photons in a Dressed Three-Level Cascade, Physical Review Letters 118, 233601 (2017)
S. Kreinberg et al.,Emission from quantum-dot high- microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling, Light: Science & Applications e17030 (2017)
M. Strauß et al., Resonance fluorescence of a site-controlled quantum dot realized by the buriedstressor growth technique, Appl. Phys. Lett. 110, 111101 (2017)
P. Munnelly et al., On-chip optoelectronic feedback in a micropillar laser-detector assembly , Optica 4, 303–306 (2017)
T. Jakubczyk et al.,Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses, ACS Photonics 3, 2461 (2016)
C. Hopfmann et al., Transition from Jaynes-Cummings to Autler-Townes ladder in a quantum dot-microcavity system, Phys. Rev. B 95, 035302 (2017)
M. Strauß et al., Resonance fuorescence of a site-controlled quantum dot realized by the buried-stressor growth technique, ArXiv e-prints 1612.08063 (2016)
A. Thoma et al., Two-photon interference from remote deterministic quantum dot microlenses, Appl. Phys. Lett. 110, 011104 (2016)
A. Kaganskiy et al., CSAR 62 as negative-tone resist for high-contrast e-beam lithography at temperatures between 4 K and room temperature, ArXiv e-prints 1611.06859 (2016)
E. Schlottmann et al., Injection Locking of Quantum-Dot Microlasers Operating in the Few-Photon Regime, Phys. Rev. Applied 6, 044023 (2016) Physical Review Applied Editors' Suggestion (October 2016)
A. Kaganskiy et al., CSAR 62 as negative-tone resist for high-contrast e-beam lithography at temperatures between 4 K and room temperature, J. Vac. Sci. Technol. B 34, 061603 (2016)
S. C. Kuhn et al., Cavity assisted emission of single, paired and heralded photons from a single quantum dot device, Opt. Express 24, 25446-25461 (2016)
C. Hopfmann et al., Efficient stray-light suppression for resonance fluorescence in quantum dot micropillars using self-aligned metal apertures, Semicond. Sci. Technol. 31, 095007 (2016)
A. Thoma et al., A bright triggered twin-photon source in the solid state, ArXiv e-prints 1608.02768 (2016)
C. Redlich et al., Mode-switching induced super-thermal bunching in quantum-dot microlasers, New J. Phys. 18, 063011 (2016)
A. Thoma et al., Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments, Physical Review Letters 116, 033601 (2016)
A. Schlehahn et al., Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses, Applied Physics Letters 108, 021104 (2016)
Featured in: Nature Photonics | Research Highlights by N. Horiuchi, Nature Photonics 10, 145 (2016)
P. Schnauber et al., Bright Single-Photon Sources Based on Anti-Reflection Coated Deterministic Quantum Dot Microlenses, Technologies 4, 1 (2016)
A. Schlehahn et al., Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser, Applied Physics Letters 107, 041105 (2015)
A. Kaganskiy et al., Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing, Review of Scientific Instruments 86, 073903 (2015)
M. Gschrey et al., Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing threedimensional in situ electron-beam lithography, Nature Communications 6, 7662 (2015)
A. Musiał et al., Correlations between axial and lateral emission of coupled quantum dot–micropillar cavities, Physical Review B 91, 205310 (2015)
D. Quandt, J.-H. Schulze, A. Schliwa, Z. Diemer, C. Prohl, A. Lenz, H. Eisele, A. Strittmatter, U. W. Pohl, M. Gschrey, S. Rodt, S. Reitzenstein, D. Bimberg, M. Lehmann, and M. Weyland, "Strong charge-carrier localization in InAs/GaAs submonolayer stacks prepared by Sb-assisted metalorganic vapor-phase epitaxy", Phys. Rev. B 91 235418 (2015)
M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, S. Reitzenstein, "Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication",  J. Vac. Sci. Technol. B 33 021603 (2015)
A. Schlehahn, L. Krüger, M. Gschrey, J.-H. Schulze, S. Rodt, A. Strittmatter, T. Heindel, and S. Reitzenstein, "Operating single quantum emitters with a compact Stirling cryocooler", Rev. Sci. Instrum. 86, 013113 (2015)
M. Gschrey, R. Schmidt, A. Kaganskiy, S. Rodt, and S. Reitzenstein, "Study of high-resolution electron-beam resists for applications in low-temperature lithography", J. Vac. Sci. & Techn. B 32, 061601 (2014)
M. Gschrey, M. Seifried, L. Krüger, R. Schmidt, J.-H. Schulze, T. Heindel, S. Burger, S. Rodt, F. Schmidt, A. Strittmatter, and S. Reitzenstein, "Enhanced photon-extraction efficiency from deterministic quantum-dot microlenses",  arXiv:1312.6298 (2013)
M. Gschrey, F. Gericke, A. Schüßler, R. Schmidt, J.-H. Schulze, T. Heindel, S. Rodt, A. Strittmatter, and S. Reitzenstein, "In situ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy“, Appl. Phys. Lett. 102, 251113 (2013)

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.