direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Semiconductor-based single-photon sources for quantum-information processing

Schematic of an electrically-driven single-photon emitter that is connected to an optical fiber.
Lupe

Within the project single-photon sources based on epitaxial quantum dots will be realized as "plug and play"-ready devices. The fabrication process will be analyzed and tested with respect to its technical and economic feasibility. Special emphasis is placed on the site-controlled growth of the quantum dots.

 

 

 

 

 

The development of "plug and play"-ready single photon sources focusses on:

  • Self-aligned growth and integration of single quantum dots as emitters
  • VCSEL technology compatible fabrication processes
  • High single photon output flux
  • Pure single photon emission
  • Narrow emission linewidth
  • Spectrally tunable emission of single photons
  • Electrical triggering of single photon emission
  • User friendly fiber outcoupling
  • User friendly operation using Helium/Nitrogen free cooling

    Partner:

    PD Dr. A. Strittmatter, Institut für Festkörperphysik, Technische Universität Berlin, Germany

    Funded by:

    Federal Ministry of Education and Research, Grant-No.: 03V0630

    Publications:

    S. Fischbach et al.,Efficient single-photon source based on a deterministically fabricated single quantum dot - microstructure with backside gold mirror, Appl. Phys. Lett. 111, 011106 (2017)

    S. Fischbach et al.,Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source, ACS Photonics ASAP (2017)

     

    U.S. Patent: „Optoelektronische Vorrichtung“

    Publication number US20160320575 A1

    Application number US 14/699,605

     

    T. Jakubczyk et al.,Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses, ACS Photonics 3, 2461 (2016)

    C. Hopfmann et al., Transition from Jaynes-Cummings to Autler-Townes ladder in a quantum dot-microcavity system, Phys. Rev. B 95, 035302 (2017)

    A. Thoma et al., A bright triggered twin-photon source in the solid state, ArXiv e-prints 1608.02768 (2016)

    A. Schlehahn et al., An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency, APL Photonics 1, 011301 (2016)

    Selected for cover image.

    A. Thoma et al., Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments, Physical Review Letters 116, 033601 (2016)

    A. Schlehahn et al., Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses, Applied Physics Letters 108, 021104 (2016)

    Featured in: Nature Photonics | Research Highlights by N. Horiuchi, Nature Photonics 10, 145 (2016)

    P. Schnauber et al., Bright Single-Photon Sources Based on Anti-Reflection Coated Deterministic Quantum Dot Microlenses, Technologies 4, 1 (2016)

    A. Schlehahn et al., Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser, Applied Physics Letters 107, 041105 (2015)

    A. Schlehahn et al., Operating single quantum emitters with a compact Stirling cryocooler, Review of Scientific Instruments 86, 013113 (2015)

    References:

    Press release:  http://www.tu-berlin.de/?id=138056

    W. Unrau, D. Quandt, J.-H. Schulze, T. Heindel, T. D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, Appl. Phys. Lett. 101, 211119 (2012)

    T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, „Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency“, Appl. Phys. Lett. 96, 011107 (2010)

     

     

    Zusatzinformationen / Extras

    Direktzugang

    Schnellnavigation zur Seite über Nummerneingabe