direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Deterministic quantum devices for quantum communication networks

Schematic of the CLL approach: (a) Mapping of the luminescence properties of a resist-coated sample, (b) full-dose exposure of the resist at chosen positions, (c) fabrication of, e.g., meas structures by dry etching, (d) final structure with, e.g., quantu

We focus on the research and development of deterministic devices for the generation and manipulation of single photons for applications in the field of quantum information technology. This will be done by developing deterministic and non-classical light sources using site-controlled quantum dots grown by the buried-stressor growth approach and by utilizing in-situ cathodoluminescence lithography as technology platforms. The research tasks will also include the deterministic fabrication of on-chip optical elements and circuits for highly-integrated photonic structures.

Principal investigators:

Prof. Stephan Reitzenstein, TU Berlin

Dr. Sven Rodt, TU Berlin

Funded by:

German Research Foundation within the Collaborative Research Center 787 "Semiconductor Nanophotonics: Materials, Models, Devices"

Homepage of CRC 787


(from the current and previous project phase)


A. Kaganskiy et al., Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses, Optics Communications, 418, 162-166 (2018)

T. Heindel et al.,Accessing the dark exciton in deterministic quantum-dot microlenses, APL Photonics 2, 121303 (2017)

Featured Headliner | Press Release

P. Schnauber et al., Deterministic integration of quantum dots into on-chip multi-mode interference beamsplitters using in-situ electron beam lithography, ArXiv e-prints 1712.03837 (2017)

S. Fischbach et al.,Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source, ACS Photonics ASAP (2017)

S. Bounouar et al., Path-Controlled Time Reordering of Paired Photons in a Dressed Three-Level Cascade, Physical Review Letters 118, 233601 (2017)

S. Kreinberg et al.,Emission from quantum-dot high- microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling, Light: Science & Applications e17030 (2017)

M. Strauß et al., Resonance fluorescence of a site-controlled quantum dot realized by the buriedstressor growth technique, Appl. Phys. Lett. 110, 111101 (2017)

P. Munnelly et al., On-chip optoelectronic feedback in a micropillar laser-detector assembly , Optica 4, 303–306 (2017)

T. Jakubczyk et al.,Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses, ACS Photonics 3, 2461 (2016)

C. Hopfmann et al., Transition from Jaynes-Cummings to Autler-Townes ladder in a quantum dot-microcavity system, Phys. Rev. B 95, 035302 (2017)

M. Strauß et al., Resonance fuorescence of a site-controlled quantum dot realized by the buried-stressor growth technique, ArXiv e-prints 1612.08063 (2016)

A. Thoma et al., Two-photon interference from remote deterministic quantum dot microlenses, Appl. Phys. Lett. 110, 011104 (2016)

A. Kaganskiy et al., CSAR 62 as negative-tone resist for high-contrast e-beam lithography at temperatures between 4 K and room temperature, ArXiv e-prints 1611.06859 (2016)

E. Schlottmann et al., Injection Locking of Quantum-Dot Microlasers Operating in the Few-Photon Regime, Phys. Rev. Applied 6, 044023 (2016)

Physical Review Applied Editors' Suggestion (October 2016)

A. Kaganskiy et al., CSAR 62 as negative-tone resist for high-contrast e-beam lithography at temperatures between 4 K and room temperature, J. Vac. Sci. Technol. B 34, 061603 (2016)

S. C. Kuhn et al., Cavity assisted emission of single, paired and heralded photons from a single quantum dot device, Opt. Express 24, 25446-25461 (2016)

C. Hopfmann et al., Efficient stray-light suppression for resonance fluorescence in quantum dot micropillars using self-aligned metal apertures, Semicond. Sci. Technol. 31, 095007 (2016)

A. Thoma et al., A bright triggered twin-photon source in the solid state, ArXiv e-prints 1608.02768 (2016)

C. Redlich et al., Mode-switching induced super-thermal bunching in quantum-dot microlasers, New J. Phys. 18, 063011 (2016)

A. Thoma et al., Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments, Physical Review Letters 116, 033601 (2016)

A. Schlehahn et al., Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses, Applied Physics Letters 108, 021104 (2016)

Featured in: Nature Photonics | Research Highlights by N. Horiuchi, Nature Photonics 10, 145 (2016)

P. Schnauber et al., Bright Single-Photon Sources Based on Anti-Reflection Coated Deterministic Quantum Dot Microlenses, Technologies 4, 1 (2016)

A. Schlehahn et al., Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser, Applied Physics Letters 107, 041105 (2015)

A. Kaganskiy et al., Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing, Review of Scientific Instruments 86, 073903 (2015)

M. Gschrey et al., Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing threedimensional in situ electron-beam lithography, Nature Communications 6, 7662 (2015)

A. Musiał et al., Correlations between axial and lateral emission of coupled quantum dot–micropillar cavities, Physical Review B 91, 205310 (2015)

D. Quandt, J.-H. Schulze, A. Schliwa, Z. Diemer, C. Prohl, A. Lenz, H. Eisele, A. Strittmatter, U. W. Pohl, M. Gschrey, S. Rodt, S. Reitzenstein, D. Bimberg, M. Lehmann, and M. Weyland, "Strong charge-carrier localization in InAs/GaAs submonolayer stacks prepared by Sb-assisted metalorganic vapor-phase epitaxy", Phys. Rev. B 91 235418 (2015)

M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, S. Reitzenstein, "Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication",  J. Vac. Sci. Technol. B 33 021603 (2015)

A. Schlehahn, L. Krüger, M. Gschrey, J.-H. Schulze, S. Rodt, A. Strittmatter, T. Heindel, and S. Reitzenstein, "Operating single quantum emitters with a compact Stirling cryocooler", Rev. Sci. Instrum. 86, 013113 (2015)

M. Gschrey, R. Schmidt, A. Kaganskiy, S. Rodt, and S. Reitzenstein, "Study of high-resolution electron-beam resists for applications in low-temperature lithography", J. Vac. Sci. & Techn. B 32, 061601 (2014)

M. Gschrey, M. Seifried, L. Krüger, R. Schmidt, J.-H. Schulze, T. Heindel, S. Burger, S. Rodt, F. Schmidt, A. Strittmatter, and S. Reitzenstein, "Enhanced photon-extraction efficiency from deterministic quantum-dot microlenses",  arXiv:1312.6298 (2013)

M. Gschrey, F. Gericke, A. Schüßler, R. Schmidt, J.-H. Schulze, T. Heindel, S. Rodt, A. Strittmatter, and S. Reitzenstein, "In situ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy“, Appl. Phys. Lett. 102, 251113 (2013)

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe