Formation of unstrained quantum dots

- A combination of Stranski-Krastanov growth mode and in situ etching technique leads to unstrained GaAs/AlGaAs quantum dots.
- Low temperature photoluminescence spectra show that GaAs/AlGaAs quantum dots are optically active at ~700-780 nm wavelength.
- An inverted quantum dot shape is assumed.
- Cross-sectional scanning tunneling microscopy (XSTM) is used for structural investigation of these buried nanostructures.

Photoluminescence spectra

- The GaAs quantum well thickness varies between 0.5 and 2.5 nm. Furthermore, a decomposition of the AlGaAs is observed. Therefore the interfaces of GaAs and AlGaAs layers are not abrupt.
- The observed thicknesses of the other layers fit well to the nominal thickness variations of the GaAs quantum well.

Cross-sectional scanning tunneling microscopy (XSTM)

- The GaAs/AlGaAs quantum dots have a low density of 4×10^7 cm$^{-2}$, which is directly correlated to the density of the former InAs QDs.
- To locate GaAs/AlGaAs QDs, XSTM images have to be examined for regions were the lower AlGaAs layer reaches down to the InAs wetting layer.

Conclusion

First XSTM images of unstrained, inverted GaAs/AlGaAs QDs grown by a combination of SK growth mode and an in situ etching technique as AsBr$_3$ shown.

From atomically resolved images we found thickness variations of the GaAs quantum well between 0.5 and 2.5 nm and a decomposition of the AlGaAs layers.

GaAs QDs were observed with base lengths of about 35 nm, heights of 5-6 nm and a reversed truncated cone shape.

XSTM Experiment

- Top-view AFM and STM
 - Atomic force microscopy (AFM) and STM images are taken to control the new technique and characterize the surface morphology before depositing the GaAs QD material.
 - AFM image after 5 nm etching and therewith after forming the nanohole.
 - STM image of the AlGaAs nanohole and height profile.

- Photoluminescence spectra
 - PL and PLE spectra of a single GaAs/AlGaAs quantum dot.
 - The bottom graph is a calculated excitonic absorption spectrum and the inset shows 3D representations of ground and first excited state wave functions for electrons (E) and holes (H) in the quantum dot.

- Cross-sectional scanning tunneling microscopy (XSTM)
 - The GaAs/AlGaAs quantum dots have a low density of 4×10^7 cm$^{-2}$, which is directly correlated to the density of the former InAs QDs.
 - To locate GaAs/AlGaAs QDs, XSTM images have to be examined for regions were the lower AlGaAs layer reaches down to the InAs wetting layer.

References

Acknowledgement

We would like to acknowledge helpful discussions with A. Schliwa. This work was supported by the Deutsche Forschungsgemeinschaft in the collaborative research center 594-295, Teilprojekt A4, and was funded by the SANDE network of excellence of the European Commission (Contract No. MIP6-CT-2004-500101).