XSTM Experiment

Sample Structure

InGaAs Quantum Dots

1. Reversed Truncated Cone
 - average dot thickness of about 5 nm
 - lateral size of the dots varying between 10 and 20 nm
 - inhomogeneous indium composition
 - indium rich center in form of a reversed truncated cone
 - dot border
 - observed three different dot types
 - dots with an indium distribution characterized by a reversed truncated In-rich cone
 - quantum ring-like structures with lack of indium right at the position where the highest indium concentration is found in type-1 dots
 - nanovoids, characterized by a real material hole in the center and In atoms forming above the void a second wetting layer for strain accommodation

Analysis of the Stoichiometry

Indium distribution is characterized by a reversed truncated In-rich cone with a maximum In content of about 60%.

Conclusion

1. Quantum Dots
 - kidney shaped structures with average thickness of about 5 nm
 - corresponding to the cross section of a quantum dot with a crater-like depression
 - lack of indium right at the position where the highest indium concentration is found in type-1 dots

2. Nanovoids
 - shape and size of the nanovoids varies with the sample bias
 - larger size at positive sample bias indicates a lack of Ga atoms and an ionic formation of the inner surface of the void
 - depth of the material hole more than one atomic step and no opposite structures are observed, ruling out the possibility of a cleavage-related artifact

3. Schematic model of the development of the three quantum dot types
 - subsequent overgrowth of small type-1 dots leading to a reversed truncated In-rich cone
 - for the type-2 dots covered by a thinner overlayer the long growth interruption results to an outward diffusion of the In-rich material and leads to crater-like depression

Electronic and Structural Contrast

Negative bias voltage: Sensitive to cations like As
 - Image taken at -2.1 V

Positive bias voltage: Sensitive to anions like Ga, In
 - Image taken at -2.1 V

Low bias voltage: Structural plus electronic contrast
 - Image taken at -3.0 V

High bias voltage: Only structural contrast from strain relaxation
 - strain-induced outward relaxation tip

References

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft in the collaborative research center SFB-716, Teilprojekte A4 and A7 and was funded by the SANPERE Network of Excellence of the European Commission, contract number NMP-CT-2004-50101.